[bookmark: _GoBack]What is Jess? Jess stands for Java Expert System Shell. It is a rule engine and scripting environment written in Java used for building expert systems. The first version of Jess was released in 1995 by Ernest Friedman-Hill of The Sandia National Labratories. At this time Jess was in its early stages, and has evolved to the current version 6.0. The term Expert System is used to describe a computer-based application that employs a set of rules based upon human knowledge, to solve problems that require human expertise. These systems allow scarce expertise to be shared throughout a whole organization. There are several environments in which rule based expert systems can be built, including: Prolog, Lisp, Clips and Jess. Originally Jess was based on Clips, but today stands as its own unique environment with its own functionality. However, there is still compatibility as many Jess scripts can run on Clips and vice versa. Unlike Clips, Jess is written using Sun’s Java language. This gives Jess all the intrinsic advantages of any Java application. Specifically, the ability to “write once and run anywhere” along with the benefits of an Object Oriented language including polymorphism, encapsulation, etc. Technically speaking, Jess is simply a Java library that can act as both a rule engine and an interpreter. The interpreter allows a user to execute java code on the fly without compilation. While this feature has uses in development and testing, the remainder of this paper will concentrate on Jess’s rule engine that is the core of the system. 

Jess Architecture Jess applications can take many forms. In the simplest scenario a user can interact directly with Jess’s command line interface. While this interface allows a user to interact with the Jess rule engine by stating rules and posing queries, the interface is not very intuitive and requires knowledge of the Jess environment and language. Because Jess is written in Java, the rule engine can be tightly integrated with or embedded into a Java application. These applications can be stand alone or in the form of an applet, and can take advantage of other Java libraries, and communicate with the rule engine through an API. Such applications usually have some kind of graphical user interface, so the user requires no knowledge of Jess. 

The Rule Engine At the core of any Jess application is the rule engine and knowledge base. The engine is comprised of hundreds or possibly thousands of domain specific rules. During development a number of area experts will work with the designers to establish these rules. While syntactically incorrect, each rule can be thought of in the following way: IF condition THEN operator To understand these rules you have to look at the knowledge base that contains many facts about the world in which the system operates. This collection of facts is constantly changing in response to user input. The rule engine continuously compares its rules to the facts in the knowledge base. If the condition in a rule matches a fact in the knowledge base the rule is fired and the action is taken. For example, if a fact in the knowledge base stated “It is raining” and a rule with the condition=”If it is raining” existed, then the rule would be fired and corresponding action would be taken – possibly “Take an umbrella.” This example is straight forward but keep in mind that a system can contain possibly thousands of rules and the action of one rule can lead to the firing of one or more other rules, resulting in a cascading effect. Jess must ensure that the chain of rules do not become an infinite loop, while still efficiently comparing facts and rules. Once more, in many systems the rule engine runs continuously which means that after one iteration through the rules it must do another iteration again doing fact and rule comparisons. In the next iteration the pre-existing facts will once again fire the same set of rules. Jess must find a way to eliminate this redundancy. In the case of new facts, ideally the rule engine should compare the facts to rules with conditions that are “likely” to match. This intelligent comparison will greatly improve performance. Clearly, the inner workings of the rule engine are no trivial matter and Jess like many other rule based systems, utilizes the Rete Algorithm. This algorithm is many orders of magnitude faster than simply looping through a set of IF-THEN rules, and is described in detail in: Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Problem", Charles L. Forgy, Artificial Intelligence 19 (1982), 17-37 

Existing Jess Applications The School of Computing at the National University of Singapore is currently involved in a research project known as IntelliClean. The system utilizes a knowledge-based approach to data cleaning which is a necessary phase of data warehousing where “dirty data” is removed. The knowledge-based approach suggests that general algorithms to clean data are ineffective. Instead it is suggested that domain knowledge is required to separate acceptable data from “dirty data.” And what would be better than Jess to capture this domain knowledge? The prototype of IntelliClean uses a Jess based expert system which interacts with an Oracle dbms. The expert system continuously interacts with the database and uses rules to determine which data should be filtered out. The Protocol Assistant is a decision support system for medical professionals. Specifically, it is designed for the “investigation of paratoid swellings.” The application requires the examiner to ask the patient a series of questions, and to perform a series of examinations. If the process is followed the system produces a diagnosis. While I don’t get the impression this is a production product, it still provides a unique example of a Jess application. An applet version of the system is available at http://www.aiai.ed.ac.uk/~jkk/medical/protocol/top-level.html Another popular use of Jess is in the development of agents. Traditionally an agent’s behavior has been described using procedural languages. In Agents can think, too!, which can been found at http://www.javaworld.com/javaworld/jw-10-1998/jw-10- howto.html , Todd Sundsted says that it is more natural to describe an agent’s behavior using a rule-based language. Often developers find themselves describing behavior in terms of rules and then going through an unnecessary step of translating the rules into a procedural language. Todd Sundsted gives an example of integrating the Jess rule engine into an agent where the behavior is described with rules, and the basic agent construction and operation can still be described using existing Java libraries. 
[bookmark: performance]Jess and performance Jess's rule engine uses an improved form of a well-known algorithm called Rete (latin for "net") to match rules against the knowledge base. Jess is actually faster than some popular expert system shells written in C, especially on large problems, where performance is dominated by algorithm quality.
Recommendations As a person with some experience doing rule-based programming, Jess is a breath of fresh air when compared to the idiosyncrasies of more traditional languages such as Prolog and Lisp. While it could be said that Prolog is a more expressive language, Jess is tailored perfectly to expert system development that does not require the flexibility and feature set of some of the more traditional languages. Some knowledge of Java will greatly reduce the learning curve, however since Jess is a sort of language within a language you will still need to learn the details of declaring rules and assertions. The online users manual is very clearly laid out and is a good reference, although I would like to see some tutorial style sections in the manual. It seems there is also a need for some kind of Integrated Development Environment (IDE). While any Java IDE can be used, something more conducive to rule-based programming would be a nice addition. Another limitation with Jess, and most expert systems, is the ability to easily modify the rules. Typically systems based on Jess have dynamic facts in the form of user input, but the rules are static. I don’t think it is ideal in a changing environment for designers and domain experts to develop a set of rules during development, which will stand for the entire life of the system. We need a way to continuously evaluate existing rules and propose new rules, possibly even weighting rules depending on their usefulness. Unfortunately, Jess does not support this and neither do many other rule-based environments. An interesting article entitled: Neural networks as a tool for developing and validating business heuristics by Steven Walczak, addresses this very issue. Overall, Jess is an ideal candidate for expert system development. The foundation in Java will be familiar to many programmers, and allow for easy system integration with whichever architecture you choose. The rule engine is based on an algorithm which has proved to be very efficient in other rule-based environments (ie.Clips). Finally, the range of existing Jess applications should attest to its usefulness and wide spread acceptance as THE rule-based environment for expert systems!
